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We study the local classical and quantum critical properties of electron-vibration interaction, represented by
the Yu-Anderson model. It exhibits an instability, similar to the Wentzel-Bardeen singularity, whose nature
resembles to weakly first-order quantum-phase transitions at low temperatures, and crosses over to Gaussian
behavior with increasing temperature. We determine the dominant energy scale separating the quantum from
classical criticality, study the effect of dissipation, and analyze its impact on correlation functions. Similar
phenomenon should be observable in carbon nanotubes around local defects.
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I. INTRODUCTION

Quantum-phase transitions are intensively studied due to
the governing fundamental physical properties and also be-
cause a number of highly interesting systems display such
behavior. These occur at zero temperature at quantum critical
points �QCPs� and are dominated by quantum rather than
classical fluctuations. Their study enriches our knowledge on
classical and quantum critical behavior and can reveal the
connections between them in terms of quantum-to-classical
mappings.1 Quantum-phase transitions were found to explain
the behavior of Ge-doped YbRh2Si2 �Ref. 2� and other heavy
fermion materials.3

The notion “local criticality” stands for quantum-phase
transitions in, e.g., quantum impurity models which evolve
only in time but are confined in space, such as the quantum-
phase transition in the sub-Ohmic and Ohmic spin-boson
model,4,5 the dissipation-induced phase transition in a quan-
tum box,6 or the local quantum phase transition in the
pseudogap Anderson model.7

Local vibrational modes due to foreign �adsorbed� mol-
ecules or lattice imperfections strongly influence the elec-
tronic transport and induce dephasing through inelastic
scattering.8 Molecular electronic devices9,10 are probed
and controlled locally by single-molecule vibrational
spectroscopy11 based on scanning tunneling microscope
�STM� and inelastic electron tunneling spectroscopy and the
spectrum of molecular vibrations often indicates more com-
plex behavior than can be seen in bulk transport12 such as
negative differential resistance and hysteresis.13 Conductance
measurements on mechanically controllable break junctions
reveal the presence of local vibrational degrees of freedom,
when noble-metal �Pt� electrodes were connected by a single
molecule as Pt or H2.14,15 The vibrational mode softens after
coupling it to electrons, and the vibrational resonance in the
conductance due these modes shifts to lower energies. A
critical bosonic mode caused by the interplay of softening
and dissipation contributes to transport down to very low
temperatures. Thus, the detailed understanding of these
modes and their local criticality beyond the mean field are
essential,12 since even away from the critical point, they
leave their mark on the responses.1

Recently, the observation of strong phonon modes were
reported in suspended carbon nanotubes �CNs� by STM.10

The electronic properties of CN are tunable by chemical dop-
ing or by changing the chirality of the tube, hence these
systems are ideal candidates to study and control enhanced
molecular vibrations,9,10 developing around lattice imperfec-
tions or encapsulated molecules via a local deformation po-
tential. Criticality due to the local electron-vibration interac-
tion is regarded as the descendant of the Wentzel-Bardeen
�WB� singularity,16–18 which arises in a one-dimensional sys-
tem of electrons, coupled to long-wavelength phonons,
which only allows for forward scattering. For a critical value
of the electron-phonon coupling, the system becomes un-
stable and acquires a negative compressibility. The thermo-
dynamic quantities and correlation functions for the electron-
phonon system were studied near this singular point,19,20

indicating the presence of a phase transition. The divergence
of the specific heat is accompanied by a collapse of the sys-
tem induced by the strong electron-phonon interaction. For a
critical value of the electron-phonon coupling, the system
becomes unstable and acquires a negative compressibility. A
recent study21 suggested that the WB singularity could be
reached experimentally in thick carbon nanotubes due to
phonons.

Local vibrational modes and their critical properties are
interesting for a variety of other reasons. Critical modes are
important in spintronics since they unavoidably lead to de-
coherence even at very low temperatures. Electron-vibration
interactions are exceptionally important for molecular solids
where highly energetic vibrational states greatly influence
the electronic properties. Examples include the superconduc-
tivity with Tc=40 K in fullerides22 and the energetic
electron-phonon sidebands in the excitonic excitation states
of single-wall carbon nanotubes.23

This paper addresses the local criticality caused by the
electron-vibration interaction. We determine the critical ex-
ponents and show that a weakly first-order quantum-phase
transition governs the low-temperature physics, similarly to
certain Ising models. At high temperatures, it crosses over to
classical Gaussian behavior. This crossover influences the
electronic properties as well, e.g., in carbon nanotubes,
which can be revealed by local spectroscopical
measurements.11

PHYSICAL REVIEW B 79, 165121 �2009�

1098-0121/2009/79�16�/165121�5� ©2009 The American Physical Society165121-1

http://dx.doi.org/10.1103/PhysRevB.79.165121


II. MODEL AND ITS BASIC PROPERTIES

As schematization of local electron-vibration interaction,
we start with the Yu-Anderson or single impurity Holstein
model,24

H = �
k

��k�ck
+ck + gdQ�+�0���0� +

P2

2m
+

m�0
2

2
Q2, �1�

which describes d-dimensional electrons interacting with a
local bosonic mode at a single impurity site with position Q
and momentum P. The model can be mapped onto one-
dimensional chiral fermions interacting with a single vibra-
tional mode, and the fermionic field can be bosonized.8,25

Then, we arrive to an effective model of one dimensional-
coupled harmonic oscillators, i.e., the Caldeira-Leggett �CL�
model,5,26

H = vc�
−�

�

dx��x��x��2 +
g

��
Q�x��0� +

P2

2m
+

m�0
2

2
Q2,

�2�

vc is the charge velocity, and g is the phase shift caused by
gd, ��x� stems from the bosonic representation of the fer-
mion field. This also represents the effective model for the
large spin-boson model.27 After integrating out the bosonized
electron field ��x�, the effective action for the phonon reads
as

Sph =
m

2T
�

n
��n

2 + �0
2	1 −

�

�2

 + 2��n����Qn�2, �3�

where �n=2�nT is the bosonic Matsubara frequency, Qn’s
are the Fourier components of Q�	�. The main difference
with respect to CL is the potential renormalization �the
−�0

2� /�2 term�, which is avoided in CL to study the effect of
pure dissipation. In our case, the phonon is expected to
soften after coupling it to electrons on physical ground,
therefore, such local term is present in the action.5 As the
phonon-mode softens, its eigenfrequencies on the real fre-
quency axis are given by25

�p
 = − i� 
 ��0
2�1 − �/�2� − �2, �4�

where �2=��0
2 /4W��0�W, W is the bandwidth of the

conduction electrons, and �=��g��2 /2m for small g, and
approaches �2 as g→�. Here, �=1 /2�vc is the chiral elec-
tron density of states. The explicit dependence of � on gd
cannot be determined by the bosonization approach.25 The
real part of the phonon frequency remains finite �under-
damped� for ��1�2�1−�2

2 /�0
2�. For �1��2, the os-

cillatory behavior disappears from the phononic response
�Re �p
=0�, and two distinct dampings characterize it
�overdamped�.

III. QUANTUM CRITICALITY

Close to �2, the softening of the phonon frequency occurs
as

�p+ = −
i�0

2

2�2
y , �5�

where y�0 is the distance from criticality �the effective re-
duced “temperature”�,

y = 1 −
�

�2
, �6�

and following Ref. 1, the characteristic energy scale is ex-
pected to vanish as �p+�y�. This defines �=1, and using28

�=1 /yt, the “thermal” scaling exponent is yt=1. The extra i
in Eq. �5� signals the dissipative nature of the transition.
Note that the criticality is tuned by � and not by the tem-
perature, so yt belongs to �. At the same time, �p−
approaches −2i�2.

Since the problem is effectively one dimensional, pos-
sesses “zero” spatial dimension, and evolves only in time
�z=1�, this allows us to set deff=d+z=1. The dynamical ex-
ponent z can be melted in the definition of d, since there are
no separate spatial and temporal dimensions.

To proceed with the exploration of the critical properties
of our model, we evaluate its free energy. Using Eq. �3� or
following Ref. 25, it is obtained as

F = Fe + 2�

+
T

�
� dx ln�1 − exp	−

x

T

� ��x2 + �0

2y�
�x2 − �0

2y�2 + �2�x�2 ,

�7�

where Fe is the phonon free contribution of electrons. Focus-
ing on the most singular contribution in y at T=0, we get

fs�T → 0� =
�0

2

4��2
y ln	1

y

 � y2−�, �8�

leading to 2−�=1=deff /yt �using ln�x�=lim�→0�x�−1� /��,
from which yt=1 is deduced in accordance with the exponent
we got from the vanishing of the characteristic energy scale
in Eq. �5�. This suggests the emergence of a weakly first-
order quantum-phase transition.29 Interestingly, many experi-
mentally observed quantum-phase transitions belong to this
category.30 In contrast to true first-order transitions, where
fs��y�, we have logarithmic corrections in y, causing the
second derivative of fs �the equivalent of the specific heat� to
diverge in a power-law fashion as 1 /y. True first-order tran-
sitions are not accompanied by critical fluctuations. How-
ever, the weakly first-order nature of the transition here al-
lows for criticality to develop, which leaves its mark on the
fluctuations. The mean square of the Q field follows from the
effective action as

�Q2� =
T

m
�

n

1

�n
2 + �0

2y + 2���n�
, �9�

and diverges at T=0 as �Q2���ln�y��. The weak divergence
of the fluctuation is a direct consequence of the weakly first-
order nature of the instability at T=0. At finite temperatures,
this crosses over to T /y type of divergence, as we discuss
below.
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By coupling an external field �V� to the position as VQ,
we can study the resulting distortion within linear response.
According to scaling,31

�Q� = V1/��Q	 y

V1/��
 , �10�

where �Q�x� is a scaling function. From Eq. �3�, we get

�Q� =
V

m�0
2y

� V0	 y

V

−1

, �11�

from which we deduce �=1 /�=0. The scaling function is
determined as �Q�x�=1 /x. This turns out to be close to that
of the one-dimensional Ising model.31

The divergence of the order-parameter susceptibility de-
fines the � exponent. In the present case, the phonon-field Q
is expected to fluctuate close to the critical-coupling �2 and
plays the major role in the instability of the system. Its sus-
ceptibility is obtained as

�Q =
1

m�0
2

1

y
� y−�, �12�

with �=1. This divergence is analogous to the diverging
compressibility at the WB singularity.19,20 It gives for the
exponent of the external field28

yh =
yt� + d + z

2
= 1. �13�

Therefore, the universality class of this problem is defined by
deff=yt=yh=1, as is summarized in Table. I.

IV. RELATION TO THE ISING MODEL

Similar exponents characterize the one-dimensional clas-
sical ferromagnetic Ising model as well. There, for any real h
�longitudinal magnetic field� and finite T, there is no sign of
criticality. However, at T=h=0, the correlation length di-
verges, indicating the presence of a critical point. Following
the ideas of scaling, the exponents were determined31 as �
=1 /�=0, �=�=�=�=1, similarly to what we find here, and
the spatial dimension of this classical model is d=1. Inter-
estingly, this criticality can be brought to finite temperature,
if we consider an infinitely strong ferromagnetic chain or a
line of defects between two neighboring columns32,33 in the
two-dimensional Ising model on a square lattice, as shown in
Fig. 1. The critical behavior on the defect chain differs from
the bulk critical behavior, e.g., the critical exponents vary
with the defect chain strength. In the case of a chain with

infinitely strong ferromagnetic coupling, the defect contribu-
tion to the specific heat diverges34 with �=1 and the order-
parameter exponent on the defect chain is �=0,32,35 and the
other local critical exponents also agree with that of a one-
dimensional ferromagnetic Ising chain at T=0. Note that the
transition temperature of the two-dimensional Ising model is
not affected by the presence of defect line. In this respect, the
effective one-dimensional critical behavior of the defect is
embedded in a two-dimensional critical region, which facili-
tates its observation.

V. CORRELATION FUNCTIONS

The appearance of quantum criticality is further corrobo-
rated by investigating the time evolution of the correlator of
the phonon field �Q�	�Q�. The mapping of our d-spatial
dimensional quantum system �with d=0� onto a
d+1-dimensional classical one is done in the imaginary time
path-integral formalism. There, one introduces an extra
imaginary time dimension with size 1 /T, defining the length
of the classical counterpart. Thus, as long as the correlation
length �1 /T, the system exhibits the previous
d+1-dimensional quantum critical behavior. However, for �
�1 /T, finite-size effects are important, quantum effect can
be neglected, and the system crosses over to d-dimensional
classical problem.36

At T=0, the decay of the correlator in imaginary time is
obtained from the action Eq. �3� as

GQ�	� = �Q�	�Q� � �
−�

� cos��	�d�

2�2��� + �0
2y

= �
0

� �2
−1cos�x�dx

�x� + �0
2y	/2�2

�� �y	�−2 for 	 � 2�2/�0
2y

− ln�y	� for 	 � 2�2/�0
2y ,
�

�14�

and Eq. �14� is valid down to 	�1 /2�2, where the �p− fre-
quency starts to play its role. Scaling predicts28 that

TABLE I. Summary of the critical exponent in the quantum and
classical critical regions, � is only determined through �=deff+2
−2yh.

deff yt yh � � � � � �

Quantum �TT�� 1 1 1 1 0 1 � 1 1

Classical �T�T�� 0 2 1 2 −1 /2 1 −1

FIG. 1. �Color online� Two types of defect chains �red dashed
and thick black lines� are shown for the two-dimensional Ising
model, leading to the same local critical behavior.
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GQ�	� = �y�2�z−yh�/yt�		 	

y−z/yt

 = �	�	y� , �15�

where �	�x� is a scaling function, and the last relation is
obtained for our specific model. From this, we can draw
several important conclusions. First, the scaling form pre-
dicts a crossover time, separating the long and short 	 re-
gions, to scale as 	��1 /y�y−�, giving �=1, in agreement
with �=1 /yt. This is in perfect agreement with the second
integral of Eq. �14�, where only the �0

2y	 /2�2 combination
contains 	 and y, suggesting

	� =
2�2

�0
2y

. �16�

By approaching the instability �y→0�, 	�→�. Second, scal-
ing does not predict additional multiplicative powers of y in
front of the scaling function, in nice agreement with the ana-
lytical result of Eq. �14�. Third, the universal scaling function
can be determined from Eq. �14�: �	�x� decreases as −ln�x�
for x�1, and decays algebraically as 1 /x2 for x�1. The
former is characteristic to a quantum Brownian particle,5

which dominates the response when 	�→�. The latter cor-
responds to the correlator of a damped harmonic oscillator.
As we approach y→0, the harmonic potential flattens and
disappears. Then, our particle does not experience any con-
finement and performs quantum Brownian motion, which is
not bounded, and �Q2� diverges. Instead of the position Q,
the displacement Q�	�−Q�0� keeps track of its dynamics.5

The electrons also experience criticality similarly to the
oscillator. The local charge susceptibility diverges as 1 /y
similarly to the phononic response.25 The local Green’s func-
tion of the electrons Ge�	�= ��+�0 ,	���0 ,0�� decays as 1 /	
for long 	 at T=0 as in a local Fermi liquid; but for 		�, it
changes to

Ge�	� �
1

2	
�1 − 	 	

	�
2

exp�2�E�� , �17�

where �E0.577 is the Euler’s constant. Thus, half of the
spectral weight is lost at short times due to the scattering off
the phonon close to the critical point y=0. Consequently, the
spectral function �the Fourier transform of Ge�	�� takes half
of its noninteracting value for frequencies larger than 1 /	�.
This harmonizes with the behavior of the inelastic scattering
rate of the electrons,8 which reaches its maximal value at y
→0 for high-energy electrons. The above results are valid
for 	�1 /2�2, below which the other mode ��p−� dominates,
similarly to Eq. �14�.

By increasing the temperature, it is better to work in real
times since 	 is restricted in a finite slab. At T�0, GQ�t�
decays exponentially with a correlation time given by �t
=1 /2�T. This defines the quantum critical region, when be-
sides temperature, there is no other relevant energy scale in
the problem. The diverging �t at T→0 agrees with the alge-
braic decay of Eq. �14� at T=0. With increasing temperature,
we cross over to the classical critical region at

T� =
�0

2

4��2
y . �18�

For T�T�, the coherence time becomes �t=2�2 /�0
2y, as we

expect by approaching a classical transition. The very exis-
tence of T� proves the importance of studying quantum criti-
cality. Although we might be away from the critical cou-
pling, as long as the relation TT� holds, we expect to
observe the same quantum critical behavior as in Eqs. �14�
and �15�. Interestingly, T� plays an important role at T=0 as
well, the two regions of the scaling function are separated by
2�	�=1 /T�. This picture is in perfect accord with critical
fluctuation close to y=0, which change their nature around
T�.

The knowledge of yt and yh allows us to formally deter-
mine all critical exponents28 �see Table I�. These exponents
satisfy the scaling as well as quantum hyperscaling �2−�
= �d+z��� relations.

VI. CLASSICAL LIMIT

The high-temperature regime of the quantum system can
be regarded as the finite-sized classical counterpart, with
sizes smaller than the coherence length. At finite tempera-
tures, the singular contribution to the free energy in y can be
obtained from Eq. �7�, but it is instructive to follow a differ-
ent approach. In the high-temperature limit, the harmonic
oscillator becomes classical, i.e., Q and P being classical
variables in Eq. �1�. Then, after tracing out the electronic
degrees of freedom, we obtain the partition function for the
oscillator as

Z =� dPdQ exp	−
P2

2mT
−

m�0
2yQ2

2T
−

VQ

T



=
2�T

�0
�y

exp	 V2

2m�0
2yT


 , �19�

where we integrate the exponential of the classical energy
over all of phase space �all possible momenta and positions�,
and we added a source term VQ. Then, the singular part of
the free energy is

fs�T � T�� =
T

2
ln�y� −

V2

2m�0
2y

, �20�

giving �=2 and �=1. This accounts for the instability in the
purely classical version of Eq. �1� for the oscillator caused by
the vanishing of the vibration frequency.

Dissipation has no effect at high T; the instability is
caused by the potential renormalization. At this point, we are
dealing with a classical harmonic oscillator; therefore deff
=0, and the critical theory is formally equivalent to that of a
“zero-dimensional” Gaussian model.28 The other exponents
are determined as �=−1 /2 and �=−1, but the � and � ex-
ponents are senseless, since there is no dimension for the
spatial or imaginary time dependence. We mention that the
criticality of the lattice version of Eq. �1�, the Holstein
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model, is expected to depend on the dimensionality of the
electrons, and belong to a different universality class.

VII. SUMMARY

Motivated by the possibility of reaching WB singularity
in carbon nanotubes,21 we have studied the critical properties
of a variant of the WB singularity triggered by local electron-
vibration interaction. The only relevant energy scale of the
problem is identified as T�, which separates the quantum and
classical critical regions. The former belongs to the univer-

sality class of weakly first-order quantum-phase transitions,
while the latter is formally equivalent to a “zero-
dimensional” Gaussian model. The two qualitatively differ-
ent critical regimes are accessible by local vibrational
spectroscopy11 and influence the electronic response �e.g.,
dephasing8� as well.
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